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Abstract. We study a correlation function which is given by the canonical average of a 
product of one or more spin variables, for the random-bond king model, in which the 
exchange integrals are + J  ( J  > 0) and - J  with probabilities p and 1 - p ,  respectively. We 
show that an upper bound to the configurational average of the correlation function, 
calculated in the thermodynamic limit in the zero external field limit, is the product of the 
same correlation function for the corresponding ferromagnetic Ising model at the tempera- 
ture under consideration and the same quantity at the temperature T1 which is determined 
by the condition T1 = 2J/lkB In[p/(l- p ) ] l ,  where k~ is the Boltzmann constant. Applying 
this result to the spontaneous magnetisation, we see that the configurational average of the 
spontaneous magnetisation is zero for p satisfying 1 - p c  s p  s p c ,  where p c  = 
1/[1+ exp(-2J/kBTc)] and T, is the critical temperature of the ferromagnetic king model. 
p c  equals 0.70711 for the square lattice and 0.60907 for the sc lattice. The results are given 
for the random-bond king model of an arbitrary spin S, and also for the diluted random- 
bond king models of an arbitrary spin S, with the pair interaction and with general 
interaction, and for the diluted and undiluted random-bond n -vector model. 

1. Introduction 

We are concerned with the random-bond Ising model in which the exchange integrals 
take +J (J > 0) and - J with probabilities p and 1 - p ,  respectively. The nature of the 
possible phases in this system has been of much interest lately. Apart from the 
discussions on existence or non-existence of the spin glass phase in this system, it is 
widely believed that there is no spontaneous magnetisation in a range of concentration. 
However, this has not been proved yet except for the trivial case of p = $ (Nishimori and 
Suzuki 1980). In the present paper, we prove that there is no spontaneous magnetisa- 
tion for 1 - p c  s p s p c  for the system on the loose packed lattice as well as on the close 
packed lattice where p c  = 1/[1+ exp(-2J/kBT,)], kg is.the Boltzmann constant and T, 
is the Curie temperature for the ferromagnetic Ising model on the respective lattices. 
This value of concentration is equal to that for a dissociation of frustrated plaquettes 
(Schuster 1979, Kolan and Palmer 1980). 

In order to prove the existence of such concentration p c ,  we prove an inequality for 
the thermodynamic limit of the spin correlation function in the zero external field limit. 
In recent works, the exact energy and an upper bound to the specific heat on 
‘Nishimori’s line’ satisfying exp(2J/kBT) = p/ ( l  - p )  have been obtained (Nishimori 
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2716 T Horiguchi and T Morita 

1980, Morita and Horiguchi 1980). Horiguchi (1981) showed that the same arguments 
apply to the diluted system with competing interactions. In that work, he gave an 
expression for the correlation function, and used it to show that when the external field 
is zero, the configurational average of the canonical average of a product of an even 
number of spin variables is positive on Nishimori’s line for the undiluted system and on 
the corresponding line for the diluted system. The same expression shows that an upper 
bound to the configurational average of the canonical average of a product of a number 
of spin variables is given by a product of the canonical averages of the same quantity for 
the corresponding ferromagnetic Ising model under zero external field at temperatures 
T and TI = 2J/lkB ln[p/(l - p ) ] l ,  respectively. This upper bound is good for nothing 
when we consider the canonical average of a product of an odd number of spin 
variables. Thus the main purpose of the present paper is to show that a similar 
inequality is also valid for the quantity calculated in the thermodynamic limit in the zero 
external field limit, where the limit as N + M is taken first and then the limit as h + + 0 
where N is the total number of sites and h is the external field. The inequality is given in 
the form applicable to the system of arbitrary spin S. Its extension to the diluted 
random-bond Ising model is also given. 

We define the thermodynamic limit at T = 0 in the zero external field limit by such a 
procedure that the limit as T + 0 is taken first keeping h /kBT constant, then the limit as 
N+co and finally the limit as h/kBT++O; an argument justifying this limiting 
procedure is given in appendix 1. In the thermodynamic limit defined in this way, the 
configurational average of the spin correlation function is shown to be bounded above 
by the thermodynamic limit of the spin correlation function for the ferromagnetic Ising 
model at temperature T1 = 2J/ /kB ln[p/(l - p ) ] I .  Thus the existence of p c  at T = 0 is 
confirmed. This p c  is an exact lower bound for the critical concentration of the 
ferromagnetic bonds for the ferromagnetic ground state, and 1 - p c  is an exact upper 
bound for the critical concentration for the antiferromagnetic ground state. 

In § 2, we discuss the consequence of the obtained inequalities. A proof of the 
inequalities is given in § 3. The theorems are generalised to the Ising model with a 
general interaction in § 4, and to the n-vector model in § 5 .  Concluding remarks are 
given in § 6. In the argument in 0 3, we use theorems given in a previous paper by 
Horiguchi and Morita (1979, to be referred to as HM). In § 4, we need a theorem which 
is the extension of theorem 1 of HM for the random Ising model of general interaction. 
It is proved in appendix 2. 

2. Inequalities and their consequences 

We consider the Ising model of arbitrary spin S, in which the spin variables take values 
-S ,  - S  + 1, . . . , S,  as well as the ordinary Ising model in which the spin variables take 
values +1 and -1. The latter is equivalent to the former of spin 1, and quantities for 
them are related to each other by trivial relations. In order to discuss these systems at 
the same time, we shall call the latter the king model of spin *le In the following, S is a 
positive integer or a positive half-odd integer or *l. We consider the systems on a 
lattice which consists of N sites and of bonds connecting the nearest neighbour pairs of 
sites. We have a spin on each site of the lattice, and an interaction between two adjacent 
spins connected by a bond of the lattice. 

A bond is denoted by the pair of sites ( i , j )  which are on both ends of it. In the 
following Xi and rIi denote the summation and the multiplication, respectively, over all 
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the sites of the lattice, and X ( i , j )  and r I ( i , j )  denote these over all the bonds of the lattice, if 
no restriction is stated. 

We now consider a system of spin S, which is described by the Hamiltonian 

where si is the spin variable for the site i. For the bond (i ,  j ) ,  Jij is the exchange integral 
which is a quenched random variable and whose probability distribution is assumed to 
be given by 

independently of Jkl for the other bonds (k, 1) .  h is the external field and pi is the 
magnetic moment of the spin on the site i. For a finite set A of sites in the system, the 
product of the spin variables for the sites in the set A is denoted by SA: 

In A, the same site k may occur more than once, and then the corresponding spin 
variable sk must be multiplied repeatedly to give sA. The canonical average of sA, that 
is, the spin correlation function, is defined by 

(sA)$L = Tr SA e-”/Tr e-PH (2.4) 

where P = l /kBT,  T is the absolute temperature and kB is the Boltzmann constant. In 
studying the correlation function   SA)$^ for a system of spin S,  there occurs the same 
correlation function for the system of spin *l. In order to distinguish between them, we 
shall use the notation (aA)gi for  the system of spin *la ai, CTA, etc will denote si, SA, etc 
for this system. 

The configurational average of a function Q{Jij} of the set {Ji j}  is denoted by the 
angular brackets with suffix c: 

where 

PI and the associated temperature TI = l/kBIpll are introduced by 

exp(2PJ )  =p/U - P I .  (207) 

For h = 0, we have 

in which P{Jii} is given by 

(2.9) 

(Horiguchi 1981). Invoking theorem 1 and its extension to the Ising model of general 
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spin S,  given in Horiguchi and Morita (1979), we have for arbitrary N an upper bound 
to the configurational average of the zero-field spin correlation function: 

(2.10) 

( P ) ( + J )  where (SA)N,h=O and (gA)$!h%’) are the zero-field spin correlation function for the 
ferromagnetic Ising model of spin S at temperature T and that of spin *l at 
temperature TI, respectively. 

Inequalities similar to (2.10) are valid also for the thermodynamic limit of the spin 
correlation function in the zero external field limit. The detail of its proof is given in the 
next section and here we only use the results. First we have the following inequality 
from theorem 1 in the next section: 

(2.11) 

( P ) ( + J )  where I((SA)(”)clThL, (SA)ThL and (gA)$E!phti”+J’ are the thermodynamic limits of the 
absolute value of the spin correlation function in the zero external field limit for the 
random Ising model of general spin S,  and for the ferromagnetic Ising model of general 
spin S and of spin * l ,  respectively. They are defined by 

(2.12) 

(2.14) 

The system size tends to infinity as N + m ,  in Van Hove’s way (Ruelle 1969). In 
particular, for spontaneous magnetisation, we have 

(2.15) 

where mI(Tl) and ms(T) are the spontaneous magnetisation of the ferromagnetic Ising 
model of spin *1 at temperature Tl and that of spin S at temperature T. For example, 
mI( T I )  is given by 

(2.16) 

(2.17) 

for the square and the triangular lattice, respectively, when p 2 3 ,  with the aid of the 
analytic expressions for spontaneous magnetisation (McCoy and Wu 1973, Potts 
1952). For the cubic lattices, we are able to use the Pad6 approximant for the 
calculations of the upper bound mI(Tl)ms(T). mI(T1) is zero when TI 3 T,. Then we 
do not have spontaneous magnetisation in our random system at an arbitrary tempera- 
ture T > 0 if 1 - p c s p  <pc.  T, is the Curie temperature for the ferromagnetic Ising 
model of spin *1 and p c  is given by 

m I ( ~ l )  = [I - i 6 ( i  - P ) ~ P ~ / ( ~ P  - 1)4]1/8 
3 1/8 mdT1) = (1 - 16(1 - P I 6 P 2 / [ ( P 2  + 3(1 -PI2)(2P - 1) I) 

pc= 1/[1 +exp(-2J/kBT,)]. (2.18) 

mI(Tl) is shown in figure 1 for the square, triangular and sc lattices. The values of p c  for 
several lattices are given in table 1. 
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Figure 1. The upper bound to the spontaneous magnetisation divided by (SI for the 
random-bond Ising model of arbitrary spin S and to the spontaneous magnetisation for the 
random-bond n-vector model, when the exchange interaction is .+J(J>O) and -J with 
probabilities p and 1 - - p ,  respectively. 

Table 1. The lower bound to the critical concentration of the ferromagnetic bonds, p c ,  for 
the ferromagnetic state, and the upper bound to the same quantity, l -pc ,  for the 
antiferromagnetic state. 

Lattice Pc l - P c  

Hexagonal 0.788 6751 0.211 3249 
Square 0.707 1068 0.292 3932 
Triangular 0.633 9747 0.366 0253 
sc 0.609 07 0.390 93 
BCC 0.578 06 0.421 94 
FCC 0.550 87 0.449 13 

When we use inequality (2.11), we have an upper bound to the susceptibility: 

where 

(2.20) 

(2.21) 

(2.22) 
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Here i is an arbitrary site in the system and r is a set of sites including the site i. The total 
number of the sites N1 in the set r tends to infinity in the sense of Van Hove (Ruelle 
1969) at the last stage. The inequality (2.19) shows that the susceptibility ~ $ 2  never 
diverges when 1 - p c  s p s pc ,  at any temperature T > 0. 

In order to investigate the properties at T = 0, we define the thermodynamic limit at 
T = 0 of the spin correlation function in the zero external field limit by 

(see appendix 1). Here the spin correlation function is regarded as a function of N, pJ 
and ph. While keeping ph constant, the limit as pJ + 00 is taken first and then the limit 
as N + CO. Finally we take the limit as ph + +O. When we apply this limiting procedure 
to the ferromagnetic Ising model on the linear chain and the system consisting of free 
spins under uniform external field, we are able to obtain the right results at T = 0 for 
these systems. In theorem 1 in the next section, we have 

(2.24) 

for the spin correlation function and then 

I((Si)('="))clThL mI(T1). (2.25) 

Thus equation (2.25) shows that p c  given by (2.18) is the lower bound to the critical 
concentration of the ferromagnetic bonds for the ferromagnetic ground state. This 
value of p c  is equal to the one obtained by Schuster (1979) for a dissociation of 
frustrated plaquettes. 

3. Lemmas, proposition and theorems 

In this section, we present two theorems and their proofs with the aid of three lemmas 
and one proposition. Theorem 1 is for the random-bond Ising model, where the 
exchange integrals take values J and -1. Theorem 2 is its generalisation for the diluted 
systems. Consequences of the theorems are discussed in § 2. 

Lemma 1. We consider a function Q of the spin variables, which is bounded by a finite 
value M :  I Q (  G M. If the external fields hi on a finite number N1 of sites i are changed by 
Ahi and if Ahi multiplied by the magnetic moment pi at the site are bounded by Ah for 
all the sites: IAhipil G Ah, then the following inequality holds for the associated change 
A(Q) of the canonical average of the quantity Q for a regular or a random Ising model 

IA(Q)l ~M[exp(2N1PhhlSl)  - 11 (3.1) 

where IS( is equal to S when the spins in the system are of spin S which is an integer or a 
half-odd integer, and to 1 when they are of spin k l ,  

Proof. Within the present proof, the canonical average of Q calculated for the systems 
in which the external fields in the sites i are hi and hi = hi + Ahi are denoted by and 
(Q),,, respectively. Then 
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where 

Now A(Q) is expressed as 

In the last member the first factor Q in the numerator is bounded by M. Since the total 
number of the sites on which Ahipi is non-zero is N I  at most and lAhipiI 4 Ah for all i, the 
denominator is greater than exp(-N1PAhISI) and the absolute value of the second 
factor in the numerator is bounded by exp(N1PAhlSJ) -exp(-N1pAhISI). As the 
result, we have the inequality (3.1). 

Lemma 2. We consider a function Q of the spin variables, which is bounded by a finite 
value M: IQ\ sM.  We denote the canonical average of Q for a regular or a random 
Ising model consisting of N spins by (Q)$)h,hl) when the external field is hl for a finite 
number N 1  of sites and h for all the other sites, and the temperature is T = l/kBP. If the 
magnetic moments are bounded by a finite value for all the sites, the limiting value of 
(Q)$lh,O) when N tends to infinity and then h to zero is equal to the average in the 
thermodynamic limit, at non-zero temperature T: 

In the thermodynamic limit at T = 0, we have 

where the limit as PJ -* CO is taken, keeping the product ph finite. 

Proof. If we apply lemma 1 by putting hi = h for all the sites i, and Ahi = - h for the N I  
sites and Ahi = 0 for all the other sites, we have the inequality 

I(Q)$:h,o) - (Q>${h.h)l< M[exp(2NiP I h (PM 1s 1) - 11 (3.4) 

where pM is an upper bound of the absolute values of the magnetic moments in the 
system. We take the limit as N -D CO and h -* + 0. Then we have the equality (3.2). 

We take the limit as PJ -* 00, N -* CO and Ph -* + 0, in this order, in (3.4) to obtain 
(3.3). 

Lemma 3. For the configurational average ((Q)$:h,h,))c of (Q)${h,hl) for random 
systems, as described in lemma 2, we have the following equality at non-zero tempera- 
tures T: 

At T = 0, we have 



2722 T Horiguchi and T Morita 

is overestimated by the configurational average of the left-hand side of (3.4) and hence 
by the right-hand side of (3.4). We take the limits in the obtained inequality to confirm 
this lemma. 

Proposition. For the ferromagnetic Ising model of N spins under a uniform external 
field h, we denote the canonical average of a product of spin variables Q=sA by 
(Q)N,h,B, where B denotes the boundary condition imposed. Then the average of Q in 
the thermodynamic limit, (Q)ThL, is obtained by 

irrespective of the boundary condition. 

Note 1. In proving the following theorems, we use the equality (3.5) only for the 
boundary condition Bo that the boundary spins are not coupled with an outer system, 
and for the boundary condition B1 that the boundary spins are coupled with a plus spin 
ferromagnetically. 

Note 2. This proposition was proved by Lebowitz and Martin-Lof (1972) in the case of 
the general Ising model of spin S with pair interactions. We assume this proposition in 
0 4, when interactions are more general. 

In the statements in the following theorems, we use the following notations. 

Notations. We pay attention to the product sA of the spin variables for a finite set A of 
sites. We consider a random-bond king model of spin S. I((sA>'@'>cIThL denotes the 
absolute value of the configurational average of the canonical average of the quantity sA 
of the system, in the thermodynamic limit in the zero external field limit at temperature 
T =  I l k & ;  see (2.12). This quantity is denoted by ((sA)""+))c,ThL when all the 
exchange integrals are replaced by their absolute values in the calculation of the 
canonical average.  SA)$:^^) denotes the canonical average of the quantity sA in the 
thermodynamic limit in the zero external field limit at the temperature T = l /kBP,  for 
the system of spin S, in which the exchange integrals for all the bonds are equal to J. 
Those quantities for the system of spin f 1 are expressed by the same expressions with sA 
replaced by c ~ A .  

Theorem 1. For a random-bond Ising model of spin S, in which the exchange integrals 
are equal to + J (J > 0) and - J with probabilities p and 1 - p ,  respectively, we have the 
following inequality 

(3.6) /((SA)(@))clThL ( u A ) T h t  (10 I)(+J)(sA)cy+J) 

where T I  = l / k B l P 1 1  is the temperature determined by the condition exp(2P1J) = 
p/(l - p ) .  Here P is either finite or P = CO. 

Proof. We consider such a set I' of a finite number N l  of spins, which involves A as a 
subset. We denote the canonical average of SA for the system of N spins in which the 
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spins are of spin S,  the external field is equal to zero for the spins belonging to r and to h 
for all the other spins, and the temperature is T = l /kBp,  by ( s ~ ) $ ~ ~ , ~ ) , ~ ~  where Bo is the 
boundary condition that the boundary spins are not connected to an outer system. We 
can express the configurational average of this quantity as follows 

where ai is either +1 or -1 for the site i belonging to the set r, and ui = +1 for all the 
other sites, and 

We multiply exp(PlhlXi(i,r)ai) on both sides of (3.7), take the summation with respect 
to {ai} over all the possible 2" sets of values of {ai} and divide by [2 cosh( P l h l ) l N 1 .  We 
then have 

(3.8) ( P  ) (0) 
( (SA)g:h ,O) ,Bo)c  = 1 P{Jij}(aA)N,!hi.B,(sA)N,(h,O),Bo 

{ J U }  

where 

( a ~ ) j V q f ) h ~ , B ~  is the canonical average of aA in the system which is composed of N1 spins 
of spin *1 on the sites belonging to the set r, where the external field multiplied by the 
magnetic moment is h l  for all the N1 sites, the temperature is given by Tl = l/kBIplj and 
B1 denotes the boundary condition that the spins which do not belong to r, and have a 
non-zero exchange integral with a spin belonging to r, are all plus one. According to 
whether p1 is positive or negative, it represents the average for the system in which the 
set of the exchange intergrals is {Jii} or {--Jij}. 

By theorem 1 of HM and its extension to the system'of an arbitrary spin S,  the two 
averages in the summand on the right-hand side of (3.8) are overestimated by their 
respective values for the systems in which all the exchange integrals and the external 
fields multiplied by the magnetic moment at each site are replaced by their absolute 
values. If the latter are expressed by ( a A ) N l f h i , B 1  and (SA)N,(h,O),Bo, we have 

(3.10) 

We take the limit as N + CO and then as h + + 0 in this inequality. By using lemma 2 on 
the right-hand side and lemma 3 on the left-hand side, we obtain 

(3.11) 

for an arbitrary N I  and h l .  We now take the limit as N I  + 00 and then as h l  + 0. By the 
proposition, we then obtain (3.6) for finite p. 

In order to show (3.6) for p = CO, we take the limit as pJ + CO, N + CO and p h  + +0, in 
this order, in (3.10) to obtain (3.11) for p =CO,  and then take the limit as N1+CO and 
then as h l  + 0. As the result, we have (3.6) for p = CO. 

(10 1Ni-J) ( P ) ( + J )  

(0) (IP,l)(+J) ( P ) ( + J )  
l((SA)N,(h,O),Bo)cl .S (aA)NlrhirBi(SA)N,(h,O).BO. 

( 6 )  (10 I ) ( + J )  ( P ) ( + J )  
I((sA) )clThLs ( a A ) N 1 : h 1 , B l  ( S A ) T h L  
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Theorem 2. For the diluted random-bond Ising model of spin S, in which the exchange 
integrals take values + J  (J > 0), - J and 0 with probabilities p ,  q and r = 1 - p  - q, 
respectively, we have the following inequalities 

(3.12) ( P ) ( + J )  
I((SA)(’))clThL ( (UA)( lP1 l ) (+ )  )c,ThL(SA)ThL 

(3.13) 

where the temperature T1 = l /kBJPl /  is defined by the relation exp(2P1J) = p / q .  We 
also have the inequality 

(3.14) (IP,I)(+J) 
[((SA)(’))cIThL (rA)ThL ((SA)(P)(+))~,ThL* 

In (3.12) and (3.14), p is either finite or P = 00. 

Proof. The present proof consists of the following alterations in the proof of theorem 1. 
Following Horiguchi (1981), a parameter P2 is introduced by exp(2P2J2) = p q / r 2 ,  and 
the factors in the first brackets on the middle and right-hand sides of (3.7) are replaced 
by 

exp ( P 2 J 2 + P 1 Jijaicj 1 rI 
( i , j )  1 + 2  exp(P2J2) cosh(PiJ)‘ 

(3.9) is replaced by 

In place of (3.10), we have 

(3.15) 

Here (~~)$f,4):,2, and ( S A ) ~ : ~ C ) , ~ ~  are the two averages on the right-hand side of (3.8) 
for the systems in which all the exchange integrals and the external fields multiplied by 
the magnetic moment at each site are replaced by their absolute values. Now we 
interchange the order of the summations over {Jij}  and {ai} and replace Jij by Ji,viaj, and 
then the summation over {ai} is taken. In the result, we have 

in place of P{Jij} in (3.15). We shall denote the value of ( sA)~() :~) ,B~,  for the set {J i j }  in 
which Jij are all equal to J, by ( S ~ ) ~ ) C , ~ B ~ ,  which is a common upper bound of 
( ~ A ) g ) g i ) , B ~ .  In confirming this fact, we use Griffiths’ inequality (Griffiths 1977). We 
replace the last average of (3.15) by this upper bound and we obtain 

(3.16) 

We take the thermodynamic limits as in the last part of the proof of theorem 1 to obtain 
(3.12), for finite P and for P = 00. We obtain inequality (3.14), by exchanging the roles 
of the two averages in the summand of (3.15). 

By theorem 2 of HM or Jedrzejewski’s inequality (Jedrzejewski 1978) used in 
proving it, (CTA)$$:~, is overestimated by the same quantity for the ferromagnetic Ising 

(lO1I)(+) ( P ) ( + J )  
((SA)%I!~,O),BO)C ((cA)Ni,hl,Bl)c(SA)N,(h,O),Bo. 
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model, in which the exchange integral is equal to (1Jijl), = (1 - r ) J ;  this fact is expressed 
as 

(181l)(+) (I@ I)(+(l-r)J) 
((ffA)Nl,hl.Bl)c (ffA)Nl:hl,Bl 

In the limit as N l + m  and then as h l +  +0, we obtain (3.13). 

4. Ising model of general random interactions 

We consider the general Ising model of an arbitrary spin S, with the Hamiltonian 

where p denotes a multiplicity function which associates a positive integer p ( i )  to each 
site i, and s p  = l l i s f ( i ) .  The first summation on the right-hand side is taken over all the 
multiplicity functions. J, is the exchange integral for the product s p  and its probability 
distribution is assumed to be given by 

JP = lJPl 

JP = -IJA 
J, = 0 

(4.2) 

independently of the other exchange integrals J,, for p' P p. We introduce parameters 
P P  and b P  by 

exP(2PP I JP I) = P P / %  

exP(2bPIJPl2) = PPqPh;. 

We have theorem 3 corresponding to theorem 2. 

(4.3) 

(4.4) 

In equations (4.5) and (4.7), P is either finite or P = 00. 

The following notes are given on the notations. cA is used when the average is for 
the system of spin *l, The thermodynamic limit is defined by taking the limit of the 
total number of sites infinity first and then the zero external field limit. The angular 
brackets with a superscript (+) shows the canonical average with the Hamiltonian (4.1) 
where Jp takes two values /Jpl and 0 with respective probabilities 1 - r, and r,,. The 
angular brackets with a superscript { + IJ,,I} and { + (1 - r,,)IJ,,l} show the canonical 
averages for the ferromagnetic general Ising model of the exchange integrals {IJ,,I} and 
of the exchange integrals ((1 - rp)l.Tpl}, respectively. When {\@,,I} occurs in the super- 
script, we use the following Boltzmann factor in the calculation of the canonical average 

exp(-PHd/Tr exp( -PHI ) 
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where 

-PHI = 1 IPpIJps' + P I  1 PiSi. 
P I 

Here P1 is an arbitrary positive number. 
In order to prove this theorem, it suffices to mention the following points. The 

factors in the first brackets on the middle and right-hand sides of (3.7) and in the first 
brackets of (3.9) are replaced by 

Z{J, i }  in (3.7), (3.8) and (3.15) are re laced by XI,}, and P{Jij}  in (3.9) and (3.15) by 
P{J,}. The superscript (IP11) of ( u A ) N ~ ~ ~ ~ , B ~  and ( u A ) ( " ~ ' ) ( + ( ~ - ~ ) ~ )  should be replaced by 
the set {IP I} of IPpI, ( + J )  of ( s A ) N , ( ~ , o ) , B , ,  by the set {+IJ,I) of lJ,l, and ( + ( l - r ) J )  of 
(uA)$!$&""' by {+ (1 -r,)lJ,l} of (1 -r,)lJ,l. In the present case, P1 may be an 
arbitrary positive number and we take the limit as N1 -* 00 and then as Plhl  -* 0 to obtain 
the thermodynamic limit ((~A){'P''}(+))c,ThL in equation (4.5). In the proof, we need 
lemma 3 which is based on lemmas 1 and 2, which are seen to be applicable also to the 
present case by an appropriate replacement of the Hamiltonian. The proposition given 
in 0 3 is assumed here. We also need theorem 1 given by HM for the general 
Hamiltonian (4.1). This is given in appendix 2. 

Now by setting r, = 0, we have an extension of theorem 1 to the general Ising model. 

(B I)(+) 
( P ) ( + J )  

Corollary. Given the Hamiltonian (4.1) with (4.2) setting r, = 0, then 

(4.9) 

where P, is determined by exp(2P, IJ, I) = p , / (  1 - p , ) .  P is either finite or P = 00. 

Here we consider the system with the Hamiltonian 

H = - C Jijsisj - J2 1 sisj - h 1 pjsi (4.10) 
(i,i) (i.i) i 

(i,j:NN) ( i , j :  NNN) 

where the first summation is taken over all nearest neighbour pairs of sites and the 
second one over all next nearest neighbour pairs of sites. P(J i j )  is assumed to be given 
by (2.2). In this case we have the following inequality from (4.9) 

(4.11) 

This is nothing but the upper bound obtained previously (Horiguchi and Morita 1979). 
Even for a small value of J2, we cannot conclude from (4.11) that there is a critical 
concentration pc below which the ferromagnetic state disappears. We rather expect 
that there is not such a critical concentration p c  in the system (4.10). 

5. Random-bond n-vector model 

In this section, we consider the n -vector model with competing interactions whose 
Hamiltonian is given by (Stanley 1974) 
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where si is the n-dimensional classical spin of unit magnitude for the site i and s4 is its 
a t h  component: 

(5.2) 1 2  si = ( S i ,  s i , .  . . , s l )  ]Si1 = 1. 

Jij for the bond (i, j )  is the quenched random variable whose distribution is described by 
(2.2) independently of J k l  for the other bonds (k, 1). The canonical average of a product 
of a number of spin variables, the spin correlation function, is defined by 

( s A ) E ~  = Tr S A  eCPH/Tr eVPH 
where 

(5.3) 

Here A represents a set of (i, a i )  where i denotes a spin in the system and ai is its 
component. 

For h = 0, we have the following equation for the configurational average of the spin 
correlation function 

where P{Jij}  is given by (2.9), and (CA):;’, is the average (SA):;’, which would be 
obtained if the system is the Ising model of spin *l and sA is 

S A =  fl si 
i 

((i,a,)EA) 

or if the system is the n-vector model of n = 1 and S A  is 

SA= fl s t .  
i 

( ( i ,a , )eA) 

Because 1s; I s 1, we have 

(5 .6)  
( I P I I ) ( + J )  

l((SA)N,h=O)cl (gA)N,h=O 

instead of (2.10). 

function in the zero external field limit defined by 
In order to obtain an upper bound to the thermodynamic limit of the spin correlation 

we notice that lemmas 1, 2 and 3 given in 9 3 are also valid in the present system. We 
have 

where P{Jij}  is given by (3.9). Here the meanings of suffices of angular brackets are the 
same as those given in 9 3. Because Is:/ S 1, we have 

(5.9) ( P )  (IP l ) ( + J )  
I((SA)N,(h,O),Bo)cl ( f l A ) N i h ~ , B i  * 

We take the limit as N + 00 and then as h + + 0 in this inequality. By using lemma 3 
modified to the present system on the left-hand side of (5.9), we have 

I ( ( s A ) ( ’ ) ) C I T ~ L  s (gA)?&!l,Bl (5.10) 
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for an arbitrary N1 and hl .  We now take the limit as N I  -* cy) and then as hl  -* + 0, and 
we arrive at the following theorem. 

Theorem 4 .  In the n-vector model with competing interactions whose distribution is 
given by (2.2), the thermodynamic limit of the spin correlation function in the zero 
external field limit defined by (5.7) is bounded above by the corresponding spin 
correlation function of the ferromagnetic n -vector model with n = 1 at the temperature 
T1 given by (2.7): 

I ( ( ~ A ) ( ’ ) ) c j n L s  ( UA m L  (5.11) 

Here /3 is either finite or /3 = cy). 
When /3 = cy), the quantity on the left-hand side of (5.11) is defined by 

(5.12) 

The results obtained do not seem to be useful for the two-dimensional system with 
n 3 2 .  However, for the three-dimensional system, these show that there is no 
spontaneous order when 1 - p c  s p  s p , ,  where p , i s  given in 0 2 for the respective cases. 
An extension of theorem 2 to the n-vector model is also straightforward. 

Theorem 5. In the n-vector model in which exchange integrals take values +J(J > 0), 
- J and 0 with probabilities p ,  q and r = 1 - p  - q, respectively, we have the following 
inequality 

(5.11) 

where the temperature Tl = l/kBI/311 is defined by the relation exp(2Pl.T) = p / q .  Here 
/3 is either finite or /3 = CO. 

(0) ( )(lP1l)(+(l-r)J) 
/((SA> )CIThLs UA ThL 

6. Concluding remarks 

We have obtained an upper bound to the thermodynamic limit of the correlation 
function for the random-bond king model of general spins with competing interactions 
and for the random-bond n-vector model with competing interactions, for the 
undiluted as well as diluted cases. Here we consider the undiluted systems of ferro- and 
antiferromagnetic bonds with respective probabilities p and 1 - p .  For the Ising model 
of general spin S, our upper bound at temperature T consists of a product of the 
corresponding correlation function of the ferromagnetic Ising model of spin *l at 
temperature TI and that of the spin S at the temperature T, where Tl= 
2J/lkB ln[p/(l -p ) ]1 .  For the n-vector model, our upper bound is equal to the cor- 
responding correlation function of the ferromagnetic n-vector model of n = 1 at the 
temperature T I .  Since T1 is a monotonically decreasing function of p for + C  p c 1, we 
could obtain a lower bound p c  to the critical concentration at which the spontaneous 
magnetisation disappears, by setting T I  = T, where T, is the Curie temperature of the 
ferromagnetic Ising model of spin * 1, because the upper bound to the spontaneous 
magnetisation disappears at p,. 

We wish to make a few remarks in order. First we notice that the obtained results 
are symmetric at p = 4 in the p axis. When we consider the system on a loose packed 
lattice, the absolute values of the configurational average of the spin correlation 
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functions are invariant with respect to a simultaneous change of Jij + - Jij and p + 1 - p ,  
and si + - s i  and pi + -pi for all the sites on one of the sublattices. Then 1 -pc is an 
upper bound to the critical concentration of ferromagnetic bonds for the antifer- 
romagnetic phase. For the close packed lattice, we expect that there is no long-range 
order for 0 6 p 6 3. However we have not succeeded in proving this yet. 

In the present paper, we introduced a magnetic moment pi for each site i. By 
choosing the signs of pi, we see that the obtained upper bound to the spin correlation 
function is an upper bound when any staggered external field is applied. As a 
consequence, no long-range order of any antiferromagnetic phase is possible when our 
upper bound to the spontaneous magnetisation is zero. 

Here we also mention the generalisations of our theorems to the configurational 
average of a product of correlation functions. In this case, similar inequalities are also 
obtainable for the respective systems. For example, we have 

for the Ising model of general spin S,  where AI are subsets of the set of N sites. For the 
n -vector model, we have 

Here AI are the sets of (i, ai). When p = 4, we have TI  = 00 and hence 

(6.3) 

Applying this to the expression of susceptibility, we obtain 

x = ( l - q ) l k ~ T  (6.4) 

for the king model of general spin S and for the n -vector model, when p = 3, Here q is 
Edwards-Anderson's order parameter for the respective systems (Edwards and 
Anderson 1975). 

The same kind of remarks also apply to the systems of diluted random bonds. 

Appendix 1. 

The thermodynamic limit in the zero external field limit at zero temperature is defined 
by (2.23) in the text. For a finite system of N sites, we retain the contribution only of the 
ground state by putting exp(pAE) >> 1, where A E  is the difference between the total 
energies of the ground state and the first excited state. We take the limit as p + 0O 

before N + 00. In the calculation of the spontaneous magnetisation, we have to put a 
weight to one direction, lifting the degeneracy for the spatial rotation of the whole 
system. If the total magnetisation is M which is of the order of N, the Boltzmann factor 
in an external field h satisfying exp(Mph) >> 1 is used for this purpose. This inequality is 
satisfied for any infinitesimal ph if M tends to infinity. In order to make the effect of the 
external field only to direct the magnetisation to one direction, we take the limit as 
p h  + + 0 after the limit as N + 00 is taken. 
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Appendix 2. 

Weextend theorem 1 given by Horiguchi and Morita (1979) to a more general class of 
Ising model. The result is used in § 4 in the text. 

Theorem. Consider a finite set of lattice sites 1, 2, . . . , N. For each site i, we assign a 
spin variable si which may take on the values - /Si/, - ISi[ + 1, . . . , lSil where /Si/ is a 
positive integer or a half-odd integer. Let p ( i )  be a multiplicity function which may take 
zero or a positive integer for each site i, and define the product s p  of si by 

s p  = JJ (AI) 
i 

For a system with the Hamiltonian 

H = -1 JPsp 
P 

where the interactions J, are quenched random variables and --cx) < J, < 00 and the sum 
is over different multiplicity functions, we have 

- ( S P ) H ‘ + ’ d  ( S P ) H  d (SP)H‘+’  (A31 
where ( s ’ ) ~  denotes the canonical average of s p  with the Hamiltonian H and ( s ’ ) ~ ( + )  
that with the Hamiltonian 

Proof. We define an auxiliary Hamiltonian H ‘  by 

where Cl is the set of multiplicity functions p for which Jp is negative: 

n = { p IJ, e 0). (‘46) 
s’ is a ghost spin variable of spin *l on a ghost site. For the system of the Hamiltonian 
H ’ ,  we have the second GKS inequality (Griffiths 1969) which reads in special cases as 
follows 

where (a),# is the canonical average of a product Q of the spin variables for the system 
in which s’ is also a spin variable and the Hamiltonian is H ’ .  The first part of the 
inequality (A3) is obtained from (A8) and the second part from (A7). 
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